Математика (проф. ур.) (Вариант 17)

21. 

а) Могут ли 5 последовательных членов непостоянной арифметической прогрессии быть простыми числами?

б) Дана непостоянная арифметическая прогрессия с разностью, не кратной 5. Какое наибольшее количество подряд идущих её членов могут быть простыми числами?

в) Известно, что 6 последовательных членов непостоянной арифметической прогрессии являются простыми, числами, большими 7. Найдите наименьшее значение, которое может принимать разность такой прогрессии.

Сравните полученный вами ответ с ответом, указанным во вкладке "пояснение". Если ответ правильный, то введите знак "+" в поле ответа, если ответ неверный, то введите знак "-". 

Регистрация


Зарегистрироваться через VK

Личный кабинет

Регистрация
Войти через VK