Информатика (Вариант 1)

Выберите ОДНО из пред­ло­жен­ных ниже заданий: 20.1 или 20.2.

 

20.1 Ис­пол­ни­тель Робот умеет пе­ре­ме­щать­ся по лабиринту, на­чер­чен­но­му на плоскости, раз­би­той на клетки. Между со­сед­ни­ми (по сторонам) клет­ка­ми может сто­ять стена, через ко­то­рую Робот прой­ти не может.

У Ро­бо­та есть де­вять команд. Че­ты­ре команды — это команды-приказы:

 

вверх вниз влево вправо

 

При вы­пол­не­нии любой из этих ко­манд Робот пе­ре­ме­ща­ет­ся на одну клет­ку соответственно: вверх ↑ вниз ↓, влево ← , впра­во →. Если Робот по­лу­чит ко­ман­ду пе­ре­дви­же­ния сквозь стену, то он разрушится.

Также у Ро­бо­та есть ко­ман­да закрасить, при ко­то­рой за­кра­ши­ва­ет­ся клетка, в ко­то­рой Робот на­хо­дит­ся в на­сто­я­щий момент.

Ещё че­ты­ре команды —  это ко­ман­ды про­вер­ки условий. Эти ко­ман­ды проверяют, сво­бо­ден ли путь для Ро­бо­та в каж­дом из четырёх воз­мож­ных направлений:

 

сверху свободно  снизу свободно  слева свободно  спра­ва свободно

 

Эти ко­ман­ды можно ис­поль­зо­вать вме­сте с усло­ви­ем «если», име­ю­щим сле­ду­ю­щий вид:

если условие то

последовательность команд

все

Здесь условие — одна из ко­манд про­вер­ки условия. Последовательность команд — это одна или не­сколь­ко любых команд-приказов. Например, для пе­ре­дви­же­ния на одну клет­ку вправо, если спра­ва нет стенки, и за­кра­ши­ва­ния клет­ки можно ис­поль­зо­вать такой алгоритм:

если спра­ва сво­бод­но то

вправо

закрасить

все

В одном усло­вии можно ис­поль­зо­вать не­сколь­ко ко­манд про­вер­ки условий, при­ме­няя ло­ги­че­ские связ­ки и, или, не,например:

если (справа свободно) и (не снизу свободно) то

вправо

все

Для по­вто­ре­ния по­сле­до­ва­тель­но­сти ко­манд можно ис­поль­зо­вать цикл «пока», име­ю­щий сле­ду­ю­щий вид:

нц пока условие


последовательность команд

кц

Например, для дви­же­ния вправо, пока это возможно, можно ис­поль­зо­вать сле­ду­ю­щий алгоритм:

нц пока спра­ва сво­бод­но

вправо

кц

 

Выполните задание.

На бес­ко­неч­ном поле име­ют­ся че­ты­ре стены, соединённые между собой, ко­то­рые об­ра­зу­ют прямоугольник. Длины стен неизвестны. В левой вер­ти­каль­ной стене есть ровно один проход, в ниж­ней го­ри­зон­таль­ной стене

также есть ровно один проход. Про­ход не может при­мы­кать к углу прямоугольника. Точ­ные места про­хо­дов и ши­ри­на про­хо­дов неизвестны. Робот на­хо­дит­ся около ниж­не­го конца левой вер­ти­каль­ной стены, сна­ру­жи пря­мо­уголь­ни­ка и выше ниж­ней стены. На ри­сун­ке ука­зан один из воз­мож­ных спо­со­бов рас­по­ло­же­ния стен и Ро­бо­та (Робот обо­зна­чен бук­вой «Р»).

 

Напишите для Ро­бо­та алгоритм, за­кра­ши­ва­ю­щий все клетки, рас­по­ло­жен­ные вдоль стен пря­мо­уголь­ни­ка с внут­рен­ней стороны. Про­хо­ды долж­ны остать­ся незакрашенными. Робот дол­жен за­кра­сить толь­ко клетки, удо­вле­тво­ря­ю­щие дан­но­му условию. Например, для приведённого выше ри­сун­ка Робот дол­жен за­кра­сить сле­ду­ю­щие клет­ки (см. рисунок).

При ис­пол­не­нии ал­го­рит­ма Робот не дол­жен разрушиться, вы­пол­не­ние ал­го­рит­ма долж­но завершиться. Ко­неч­ное рас­по­ло­же­ние Ро­бо­та может быть произвольным. Ал­го­ритм дол­жен ре­шать за­да­чу для лю­бо­го до­пу­сти­мо­го

расположения стен и лю­бо­го рас­по­ло­же­ния и раз­ме­ра про­хо­да внут­ри стены. Ал­го­ритм может быть вы­пол­нен в среде фор­маль­но­го ис­пол­ни­те­ля или за­пи­сан в тек­сто­вом редакторе.

20.2 На­пи­ши­те программу, ко­то­рая в по­сле­до­ва­тель­но­сти на­ту­раль­ных чисел опре­де­ля­ет ми­ни­маль­ное чётное число.

Программа по­лу­ча­ет на вход ко­ли­че­ство чисел в последовательности, а затем сами числа. В по­сле­до­ва­тель­но­сти все­гда име­ет­ся чётное число. Ко­ли­че­ство чисел не пре­вы­ша­ет 1000. Введённые числа не пре­вы­ша­ют 30 000.

Программа долж­на вы­ве­сти одно число — ми­ни­маль­ное чётное число.

Пример ра­бо­ты программы:

 

 

Входные данные Выходные данные

4

3

20

6

8

6

Регистрация


Зарегистрироваться через VK

Личный кабинет

Регистрация
Войти через VK