Русский язык (Определение главной информации текста)

Результаты теста

Затрачено времени:

09:01:08

Выполнено:

0% (0 из 10)

Кол-во баллов:

0

Вопрос 16

Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.

а) Докажите, что прямые AD и BC параллельны.

б) Найдите радиус окружности, описанной около треугольника BCD, если известно, что радиус первой окружности равен 4, а радиус второй окружности равен 1.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

Точки A1B1 и C1 — середины сторон соответственно BCAC и AB остроугольного треугольника ABC.

а) Докажите, что отличная от A1 точка пересечения окружностей, описанных около треугольников A1CB1 и A1BC1, лежит на окружности, описанной около треугольника B1AC1.

б) Известно, что AB = AC = 10 и BC = 12. Найдите радиус окружности, вписанной в треугольник, вершинами которого являются центры окружностей, описанных около треугольников A1CB1A1BC1 и B1AC1.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

Дана тра­пе­ция с диа­го­на­ля­ми рав­ны­ми 8 и 15. Сумма ос­но­ва­ний равна 17.

а) До­ка­жи­те, что диа­го­на­ли пер­пен­ди­ку­ляр­ны.

б) Най­ди­те пло­щадь тра­пе­ции.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

Точки B1 и C1 лежат на сторонах соответственно AC и AB треугольника ABC, причём AB1 : B1C = AC1 : C1B. Прямые BB1 и CC1 пересекаются в точке O.

а) Докажите, что прямая AO делит пополам сторону BC.

б) Найдите отношение площади четырёхугольника AB1OC1 к площади треугольника ABC, если известно, что AB1 : B1C = AC1 : C1B = 1 : 4.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

Диагональ AC разбивает трапецию ABCD с основанием AD и BC, из которых AD большее, на два подобных треугольника.

а) Докажите, что ∠ABC = ∠ACD.

б) Найдите отрезок, соединяющий середины оснований трапеции, если известно, что BC = 18, AD = 50 и 

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

В остроугольном треугольнике ABC проведены высоты AP и CQ.

а) Докажите, что угол PAC равен углу PQC.

б) Найдите радиус окружности, описанной около треугольника ABC, если известно, что PQ = 8 и ∠ABC = 60°.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

Прямая, проходящая через середину M гипотенузы AB прямоугольного треугольника ABC, перпендикулярна CM и пересекает катет AC в точке K. При этом AK : KC = 1 : 2.

а) Докажите, что 

б) Пусть прямые MK и BC пресекаются в точке P, а прямые AP и BK — в точке Q. Найдите KQ, если BC = 

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

Окруж­ность, впи­сан­ная в тра­пе­цию ABCD, ка­са­ет­ся ее бо­ко­вых сто­рон AB и CD в точ­ках M и N со­от­вет­ствен­но. Из­вест­но, что AM = 8MB и DN = 2CN.

а) До­ка­жи­те, что AD = 4BC.

б) Най­ди­те длину от­рез­ка MN, если ра­ди­ус окруж­но­сти равен 

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

Окружность с центром O проходит через вершины B и C большей боковой стороны прямоугольной трапеции ABCD и касается боковой стороны AD в точке T. Точка O лежит внутри трапеции ABCD.

а) Докажите, что угол BOC вдвое больше угла BTC.

б) Найдите расстояние от точки T до прямой BC, если основания трапеции AB и CD равны 4 и 9 соответственно.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

Точка E — середина боковой стороны CD трапеции ABCD. На стороне AB взяли точку K, так, что прямые CK и AE параллельны. Отрезки CK и BE пересекаются в точке O.

а) Докажите, что CO = KO.

б) Найти отношение оснований трапеции BC и AD, если площадь треугольника BCK составляет  площади трапеции ABCD.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Регистрация


Зарегистрироваться через VK

Личный кабинет

Регистрация
Войти через VK