Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.
15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может.
У Робота есть девять команд. Четыре команды — это команды-приказы:
вверх вниз влево вправо
При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится.
Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.
Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:
сверху свободно снизу свободно слева свободно справа свободно
Эти команды можно использовать вместе с условием «если», имеющим следующий вид:
если условие то
последовательность команд
все
Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:
если справа свободно то
вправо
закрасить
все
В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:
если (справа свободно) и (не снизу свободно) то
вправо
все
Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:
нц пока условие
последовательность команд
кц
Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:
нц пока справа свободно
вправо
кц
Выполните задание.
Робот находится в верхней клетке узкого вертикального коридора. Ширина коридора — одна клетка, длина коридора может быть произвольной. Возможный вариант начального расположения Робота приведён на рисунке (Робот обозначен буквой «Р»):
Напишите для Робота алгоритм, закрашивающий все клетки внутри коридора и возвращающий Робота в исходную позицию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рисунок). Алгоритм должен решать задачу для произвольного конечного размера коридора. При исполнении алгоритма Робот не должен разрушиться. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе.
15.2 Напишите программу, которая в последовательности натуральных чисел определяет количество чисел, кратных 3 и оканчивающихся на 2. Программа получает на вход количество чисел в последовательности, а затем сами числа. Количество чисел не превышает 1000. Введённые числа по модулю не превышают 30 000. Программа должна вывести одно число: количество чисел, кратных 3 и оканчивающихся на 2.
Пример работы программы:
Входные данные | Выходные данные |
4 12 25 12 9 |
2 |