Русский язык (Определение главной информации текста)

Результаты теста

Затрачено времени:

08:24:07

Выполнено:

0% (0 из 10)

Кол-во баллов:

0

Вопрос 16

Окружность с центром в точке O высекает на всех сторонах трапеции ABCD равные хорды.

а) Докажите, что биссектрисы всех углов трапеции пересекаются в одной и той же точке.

б) Найдите высоту трапеции, если окружность пересекает боковую сторону AB в точках K и L так, что AK = 15, KL = 6, LB = 5.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

Медианы АА1 и ВВ1 и CC1 треугольника ABC пересекаются в точке М. Точки А2В2 и С2 — середины отрезков MAMB и МС соответственно.

а) Докажите, что площадь шестиугольника A1B2C1A2B1C2 вдвое меньше площади треугольника ABC.

б) Найдите сумму квадратов всех сторон этого шестиугольника, если известно, что АВ = 6, ВС = 11 и АС = 12.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

301/6

Полученные баллы: 0

Вопрос 16

В треугольнике АВС проведены высоты АК и СМ. На них из точек М и К опущены перпендикуляры МЕ и КНсоответственно.

 

а) Докажите, что прямые ЕН и АС параллельны;

б) Найдите отношение ЕН : АС, если угол АВС равен 30°.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

Медианы AA1BB1 и CC1 треугольника ABC пересекаются в точке M. Точки A2B2 и C2 — середины отрезков MAMBи MC соответственно.

а) Докажите, что площадь шестиугольника A1B2C1A2B1C2 вдвое меньше площади треугольника ABC.

б) Найдите сумму квадратов всех сторон этого шестиугольника, если известно, что AB = 2, BC = 5 и AC = 6.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

Отрезок, соединяющий середины M и N оснований BC и AD соответственно трапеции ABCD, разбивает её на две трапеции, в каждую из которых можно вписать окружность.

а) Докажите, что трапеция ABCD равнобедренная.

б) Известно, что радиус этих окружностей равен 3, а меньшее основание BC исходной трапеции равно 10. Найдите радиус окружности, касающейся боковой стороны AB, основания AN трапеции ABMN и вписанной в неё окружности.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

В трапецию ABCD с основаниями AD и BC вписана окружность с центром O.

а) Докажите, что 

б) Найдите площадь трапеции, если  а основания равны 5 и 7.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

Параллелограмм и окружность расположены так, что сторона AB касается окружности, CD является хордой, а стороны DA и BC пересекают окружность в точках P и Q соответственно.

а) Докажите, что около четырехугольника ABQP можно описать окружность.

б) Найдите длину отрезка DQ, если известно, что AP = aBC = bBQ = c.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

Окружность с центром в точке O высекает на всех сторонах трапеции ABCD равные хорды.

а) Докажите, что биссектрисы всех углов трапеции пересекаются в одной и той же точке.

б) Найдите высоту трапеции, если окружность пересекает боковую сторону AB в точках K и L так, что AK = 11, KL = 10, LB = 4.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

Две окружности с центрами O1 и O2 пересекаются в точках A и B, причём точки O1 и O2 лежат по разные стороны от прямой AB. Продолжения диаметра CA первой окружности и хорды CB этой окружности пересекают вторую окружности в точках D и E соответственно.

а) Докажите, что треугольники CBD и O1AO2 подобны.

б) Найдите AD, если  радиус второй окружности втрое больше радиуса первой и AB = 3.

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Вопрос 16

Прямая, проходящая через середину M гипотенузы AB прямоугольного треугольника ABC, перпендикулярна CM и пересекает катет AC в точке K. При этом AK : KC = 1 : 2.

а) Докажите, что 

б) Пусть прямые MK и BC пресекаются в точке P, а прямые AP и BK — в точке Q. Найдите KQ, если BC = 

Показать правило Пояснение

Ваш ответ:

Вы пропустили вопрос

Правильный ответ:

Полученные баллы: 0

Регистрация


Зарегистрироваться через VK

Личный кабинет

Регистрация
Войти через VK